
Sanskrit and Computational1

Linguistics2

Selected papers presented at the 16th World Sanskrit Conference3

28 June – 2 July 2015, Silpakorn University, Bangkok4

Editors
Vineet Chaitanya
Amba Kulkarni

5

February 17, 20156

7

Prakriyāpradarśinī - an open source subanta8

generator9

Dhaval Patel and Shivakumari Katuri10

Abstract: Prakriyāpradarśinī is an attempt to imitate subanta deriva-11

tion process by prakriyā method given in Siddhāntakaumudī (SK) of12

Bhaṭṭojī Dīkṣita (1910) using an open source PHP code. Our goal is13

to imitate SK regarding applicability of rules and give the user step14

by step derivation. The machine handles strīpratyayaprakaraṇa also.15

In theory, there is no fixed order of rules for derivation process in16

sapādasaptādhyāyī of Aṣṭādhyāyī, but if we analyze SK for practi-17

cal application of rules, rules are applied in some kind of order. The18

authors have tried to find out the optimum order of application of19

rules from Sanskrit NLP perspective and are proposing an ‘NLP or-20

der model’ and ‘NLP order hypothesis’ for coding subantaprakaraṇa21

of SK. This is extremely beneficial from coding perspective, because22

it would decrease the iterations compared to the prevalent ‘conflict23

resolution model’ e.g. for a 10 step process, in the ‘conflict resolution24

model’ computer will check whether any of 4000 odd sūtras are ap-25

plicable or not for 10 times and resolve the conflict i.e. >40000 event26

checking, whereas in ‘NLP order model’ it would check the criteria for27

application of sūtras chronologically i.e. only with marginally above28

4000 event checking.29

The present paper tries to analyze the necessity of user input in sub-30

antaprakaraṇa of SK for proper declention. The paper also discusses31

some of the issues in rule ordering and conflict resolution for Sanskrit32

NLP from grammatical perspective.33

Keywords: Aṣṭādhyāyī, Computational Linguistics, Con-34

flict Resolution, Natural Language Programming, NLP35

Order Model, NLP Order Hypothesis, Pāṇini, Prakriyā,36

Prakriyāpradarśinī, Siddhāntakaumudī37

1

2 D. Patel and S. Katuri

1 Introduction38

Prakriyāpradarśinī is an attempt to imitate the derivation process given in39

Siddhāntakaumudī (SK) of Bhaṭṭojī Dīkṣita using an open source PHP code.40

Our goal is to imitate Siddhāntakumudī in terms of applicability of rules.41

The main difference between the present approach and earlier approaches42

for derivation is in the methodology.43

The present approach uses ‘NLP order model’ in contrast to ‘Conflict44

resolution model’ employed earlier. The details about this model will be45

discussed in section 4. This machine also handles strīpratyayas. The other46

difference is regarding the licence of the code. This code is an open source47

code which anyone can use and modify according to his specific need. We48

have spent enough time reinventing the wheel in Sanskrit NLP world. It is49

high time to move on to an open source world.50

2 Review of literature51

In all available literature regarding Sanskrit NLP, Goyal et al. (2009) has52

been found the most relevant to the pursuit at hand, therefore it has been53

commented upon.54

Introduction of that paper mentions that one has to be precise in what55

one wants to simulate. We have taken SK as base. Sūtras and vārtikas56

which are accepted in SK have been incorporated in the code. Section 2 of57

the same paper raises an issue that Scharf’s (2008) method closely follows SK58

and not that of Aṣṭādhyāyī (AS). Our present endeavour also is a simulation59

of SK, but there is kind of a reconciliation of AS method and SK method.60

The only place where we have some liberty in order is sapādasaptādhyāyī 1,61

whereas order of tripādī 2 is more or less unchangeable for any researcher. We62

have deployed one do-while loop for most of the rules of sapādasaptādhyāyī,63

which continues till the input and output are same i.e. till there is no rule64

in sapādasaptādhyāyī which can apply now. So, it works like AS method,65

but if the rules are in random order, the rules will loop over several times66

(at least 5-6 times as per our estimate). This is a heavy cost on the code67

and server. It is better if we arrange the rules in the method specified in68

‘NLP order model’ which closely follows a prakriyā method to economize69

1 AS chapter 1-1 to 8-1
2 AS chapter 8-2 to 8-4

Prakriyāpradarśinī - an open source subanta generator 3

on time and space. The words ‘NLP order model’ refer to an alternate70

order of rules where rules are organized in an order which is more suited for71

Computational Linguistics related coding as compared to AS order of rules.72

While the observation ‘AS models generation’ is true, we would like to73

draw attention that sometimes the declension varies according to speaker’s74

intention e.g. whether ‘priyatri’ would mean priyāḥ trayaḥ yasya saḥ or75

priyāḥ tisraḥ yasya saḥ depends on speaker’s intention (SK on 6.4.4). The76

derivation also varies according to it. Therefore, it is mandatory that we77

take user input on places which we find ambiguous or not amenable to cod-78

ing, especially in machines which do single word derivation with no context79

whatsoever.80

According to section 4 of Goyal et al. (2009), simulation of Sanskrit81

grammar involves the following factors. (1) Interpretation of sūtras using82

the metalanguage described by Pāṇini in the AS, (2) faithful representa-83

tion of sūtras, (3) automatic triggering of rules and (4) automatic conflict84

resolution. On these parameters, our machine works as mentioned below.85

1. For interpretation, we have used explanation offered by SK.86

2. Sūtras are represented as faithfully as possible. As and when any87

wrong output is encountered, the code is re-inspected and necessary correc-88

tions are made.89

3. Automatic triggering of rules is done as and when the necessary90

conditions are satisfied.91

4. For conflict resolution, apavāda, parasūtra, aṅgakārya and alter-92

ation in pratyayas are given priority, which takes care of majority of con-93

flicts. In case any conflict remains, it also is resolved by altering the order94

of the rule application. Unlike Pāṇini’s structure, computer language codes95

are almost always executed in a linear sequential manner. Therefore, per-96

haps the most favoured mode to stop execution of code is to place the code97

in ‘if blocks’. Considering the number of sūtras, the places of conflict are98

relatively very few, and most of the time, there is ample grammatical liter-99

ature to resolve the conflicts. So, in our opinion, finding the correct order100

for computer execution is a possibility within human reach. If, after all101

possible re-ordering, the conflict still remains, we can add a patch for that102

particular word. This is the fundamental theory behind restructuring the103

order of rules in ‘NLP order model’.104

Section 4 of that paper mentions usage of regular expressions to rep-105

resent patterns and positions to represent right and left context and alter106

4 D. Patel and S. Katuri

string by them. Slight modification in the present system is the use of array107

rather than string. Its advantage is that the array can store multiple strings108

e.g. it can store both vāk, vāg by application of vā’vasāne (8.4.56) for fu-109

ture manipulation. If we store the output in a string rather than an array110

and modify that string by rules of grammar, it becomes difficult to handle111

optional forms. For rule triggering, we have also used regular expressions112

and two custom made functions ‘sub’ and ‘arr’.113

Section 6 of the same paper highlights that rule sasajuṣo ruḥ (8.2.66)114

is an exception to pūrvatrāsiddham (8.2.1) metarule and its implication in115

coding. SK specifically mentions that rutva is not asiddha to some rules116

which require rutva as triggering event3. Therefore, we have placed sasajuṣo117

ruḥ (8.2.66) at two places. First place is before the application of these rules.118

Second is its usual tripādī place. To prevent re-application of the sūtra, we119

have remembered that once the rule has been applied. We check while120

applying for second time whether the rule has been applied already earlier.121

If yes, we do not apply it again, otherwise the rule in tripādī is applied.122

Section 7 of the same paper points out a question regarding repeat ap-123

plication of yāḍāpaḥ (7.3.113) cyclically in ramā + ṅe because of ṅittva of124

pratyaya. To circumvent this cyclical application of rules (when the rule125

should apply only once), in the do-while loop we increase $start by one,126

every time the code makes a loop. In the condition for the rule triggering,127

we ask whether variable $start is equal to 1 or not. If it is 1, then only the128

rule applies. Otherwise, it does not apply.129

Scharf (2009) has evaluated conflict resolution in AS with four different130

principles and concluded that ’determining which rule has precedence in the131

shared domains is not reducible to a single principle’. Therefore, we have132

adopted the conflict resolution explanations given in SK and coded according133

to it. Cardona (2009) has analysed the principle of pūrvatrāsiddham and134

its allowable exceptions in grammar. It is mainly in tandem with what135

traditional grammar texts offer. We have coded properly for it as far as136

subanta generation is concerned.137

With this background in mind, let us proceed with the paper.138

3 See SK on ato roraplutādaplute (6.1.113), SK part 1 page 99.

Prakriyāpradarśinī - an open source subanta generator 5

3 Overview of the project139

The project aims at creating an open source PHP code4 which would derive140

noun forms of a given word step by step according to SK. At places, we have141

also adopted the explanation offered by SK and displayed it to the user to142

make the derivation easier to understand. But, in some cases, SK explains143

why a particular rule is not applicable. If it places some constraint on code,144

we have left out that explanation in display.145

The process within the code is in SLP1 transliteration for ease of coding146

because it assigns a single letter to all Devanāgarī characters as has been147

mentioned by Hyman (2009). This minimizes ambiguity. For example,148

उग and ौढ both would have ‘prau’ in their IAST / HK transliteration,149

whereas SLP1 for them would be ‘prauga’ and ‘prOQa’. This also eases out150

transliteration to Devanāgarī and other encodings.151

User can enter the words in IAST, SLP1 or Devanāgarī transliteration.152

A peculiar problem arises when the user enters a halanta word in Devanāgarī.153

Because of variety of input methods, there are sometimes associated white154

spaces with halanta marker. So, before processing, one has to remove the155

white spaces first with help of code. The sūtra display to user is bilingual156

in Howard Kyoto protocol and Devanāgarī. The word under derivation is157

shown in Devanāgarī. At later stage, if need be, this can also be shown in158

SLP1, IAST or HK or any other transliteration method.159

If the machine needs to know some additional parameters based on the160

word given, ajax.php is called and it gives additional fields in the front161

end for user to fill. Then ultimately subanta.php is fired and the output is162

displayed to user.163

We have followed the following style pattern, so that the display conveys164

additional information regarding the sūtra: Red colour for headings and165

error messages, gray colour for vidhi sūtras or apavāda sūtras, green colour166

for paribhāṣās and sañjñāvidhāyaka sūtras and yellow colour for explanatory167

notes. Thus, the user can get the information regarding sūtra type also from168

the display without much difficulty.169

In Sanskrit grammar, there are certain words which are nityadvivacana170

or nityabahuvacana or whose derivation is same in all three liṅgas. We have171

listed some of such words as and when they occur in SK and display the172

user the information if some pratyaya can not apply to this word.173

4https://github.com/drdhaval2785/SanskritSubanta

6 D. Patel and S. Katuri

Certain fonts do not display upadhmānīya or jihvāmūlīya properly.174

Therefore, for proper display we have chosen Siddhanta5 font as our de-175

fault font. We have used ‘!’ to denote anusvāra. A brief note regarding176

some special characters used in code can be seen here6.177

Sometimes, we had to do things not mandated by SK to accommodate178

user tendency. For example, we have observed that the users usually enter179

visarga instead of sakāra at the end. We have accepted that user behavior180

and modified the code to give back the sakāra in prakriyā.181

Discussion in this paper would not be according to the order of sūtras182

in SK or AS, but according to the sequence of code subanta.php7 in which183

sūtras are applied in this machine.184

4 NLP order model and NLP order hypothesis185

Though Pāṇini’s rule order is treated as very strict, in our opinion there is186

a possibility of re-ordering them for ease of computational linguistics. We187

propose the ‘NLP order model’ and suggest an alternative rule order for188

subantaprakaraṇa8.189

As the sūtras have a kind of grouping based on similarity or conflict,190

there is some free space in which the sūtra order can be moved up / down191

in machine. Based on our experience, we put forward this ‘NLP order192

hypothesis’ for deciding rule ordering as per ‘NLP order model’ for193

Computational linguistics.194

Let us suppose that sūtras are in the order195

A1, A2, ..., A(k), .., A(n)196

The Range of freedom which the sūtra A(k) enjoys in term of moving197

it upwards or downwards in an algorithm for application to input string198

is equal to the range (A(min), A(max)), where A(min) is the last199

previous sūtra which can alter the input string for A(k) and make A(k)200

inapplicable for any possible word in Pāṇini’s grammar. A(max) is the first201

next sūtra until which no other sūtra can alter the output string of A(k) for202

5http://www.svayambhava.org/ www.svayambhava.org/
6https://github.com/drdhaval2785/SanskritSubanta/blob/master/encoding_

notes.txt/
7https://github.com/drdhaval2785/SanskritSubanta/blob/master/subanta.php/
8https://github.com/drdhaval2785/SanskritSubanta/blob/master/rule_order.

txt/

Prakriyāpradarśinī - an open source subanta generator 7

any possible word of Pāṇini’s grammar. So, it will be possible to decide203

the proper position of most of sūtras for computational linguistics with this204

range in future. If there are still some places where such rule ordering gives205

wrong results, patches may have to be applied.206

Let us clarify how we came to such a conclusion with a working example.207

If we have a look at the derivation of rāma word in SK, the following208

sūtras are important.209

rāma + ṅe -210

svaujasamauṭchaṣṭābhyāmbhisṅebhyāmbhyasṅasibhyāmbhyasṅasosāmṅyossup211

(15), ṅeryaḥ (240) and supi ca (291). The numbers in bracket indicate their212

position in our code based on ‘NLP order model’.213

Upto this point, we have taught the machine that the order is svau-214

jasamauṭchaṣṭābhyāmbhisṅebhyāmbhyasṅasibhyāmbhyasṅasosāmṅyossup (15),215

ṅeryaḥ (240) and then supi ca (291). At this point the range of sūtra ṅeryaḥ216

is (15,291).217

When we move forward in the declension and reach rāma + bhyas, there218

is a possibility of application of bahuvacane jhalyet (290). Now as a coder,219

we will have to decide where we should put this rule. At this juncture, we220

can see that supi ca (7.3.102) is the rule which can alter the output string221

(rāma+bhyas -> rāmā+bhyas) and render bahuvacane jhalyet inapplicable222

(no akāra at end). Therefore, we can not place bahuvacane jhalyet after supi223

ca, otherwise, bahuvacane jhalyet will see an altered string (rāmā+bhyas)224

and it can not apply. Therefore, we have to put it just before supi ca225

i.e. at place 290. Thus, our code sequence will be svaujasamauṭchaṣṭāb-226

hyāmbhisṅebhyāmbhyasṅasibhyāmbhyasṅasosāmṅyossup (15), ṅeryaḥ (240),227

bahuvacane jhalyet (290) and supi ca (291). The lower limit upto which228

this code can be shifted is svaujasamauṭchaṣṭābhyāmbhisṅebhyāmbhyasṅa-229

sibhyāmbhyasṅasosāmṅyossup (15). Thus we have a range for this sūtra230

ṅeryaḥ as (15,290). As the code progresses, the interval gets shortened.231

Let us take the derivation of ‘tad’ pulliṅga, to see how the range gets232

minimized as the code progresses.233

In this code the relevant rules for our discussion are tyadādīnāmaḥ234

(7.2.102), ato guṇe (6.1.97) and bahuvacane jhalyet (7.3.103). When we235

want to place tyadādīnāmaḥ at its proper place, it has to be before ato236

guṇe, which also should be before bahuvacane jhalyet. Therefore their inter237

se applicability would be tyadādīnāmaḥ -> ato guṇe -> bahuvacane jhalyet.238

Out of which tyadādīnāmaḥ and ato guṇe are treated in a single piece of239

8 D. Patel and S. Katuri

code. Therefore they are applied at specified place let’s say 191th place240

looking at other exigencies. As is obvious, they should be placed before241

bahuvacane jhalyet, because otherwise the word tad + bhyas woould not242

have conditions suitable for bahuvacane jhalyet to apply (it would have tad243

+ bhyas instead of expected ta + bhyas). So, the range of sūtra ṅeryaḥ244

has become (191,290). Similarly the range bahuvacane jhalyet has become245

(191,291) instead of earlier (15,291). In this way, the location of sūtra be-246

comes more and more restricted as the code advances. This way we can247

keep on playing with the location of sūtras as SK advances. It is beyond248

our mathematical capacities, but we suggest that if the sequences of appli-249

cation of rules in prakriyā granthas like SK are evaluated mathematically,250

near perfect rule order with least possible iteration loops may be derived251

mathematically.252

If at any given point, there is a difficulty in identifying proper location253

of a sūtra, and alteration in position gives erroneous forms, we can create a254

patch (some code to sort the issue out) for the same and overcome it. But255

in most of the sūtras in subantaprakaraṇa, it was possible to find their place256

properly9.257

5 Overview of the code258

There are mainly 6 files in our code – ajax requirements.docx, ajax.php,259

function.php, mystyle.css, script.js, subanta.html and subanta.php. We shall260

now examine the salient features of the code used in this machine.261

5.1 subanta.html, ajax requirements.docx, ajax.php and262

script.js263

Because we are treating only the subantaprakaraṇa of SK (SK pp. 110-326),264

it is not possible that machine knows all other sūtras of AS. Even otherwise,265

there are cases when the word declension depends on user’s intention (vi-266

vakṣā). Therefore, it is not possible that a machine alone can give us desired267

declension without user input. We have tried to make machine responsive268

to the word entered by user. It shows appropriate radio buttons to gather269

9 Till the paper for subanta generation was redrafted, the code has progressed beyond
strīpratyayaprakaraṇa and 80% of tiṅantaprakaraṇa. This ‘NLP order model’ still held
good. So, the suggestion made earlier has been substantiated as the code advanced..

Prakriyāpradarśinī - an open source subanta generator 9

Figure 1
User input window

additional information from user, if needed for our purpose. ajax require-270

ments.docx, ajax.php and script.js are the scripts responsible for seeking the271

input of user.272

Let us clarify this with an example. If a user enters a word with ‘ā’ at273

the end and wants to decline it in masculine gender, we need to get the in-274

formation whether this is ākārānta dhātu or not. To get this information, we275

take user input via ajax when a word ending in ‘ā’ is entered and masculine276

gender is selected as shown in Figure 1. For description of methodology,277

please see section 11. The detailed list of cases where we take user input are278

available on our website10.279

At this point let us clarify about two types of user input which have been280

deployed. The first type is where the input is taken, because the declension281

depends on the intention of user. An example of this case would be whether282

‘sarva’ is used as sañjñā or not. This is non-negotiable type of input, in the283

sense that even in future we would not be able to do away with them. We284

10https://github.com/drdhaval2785/SanskritSubanta/blob/master/ajax\
%20requirement.docx/

10 D. Patel and S. Katuri

have written ‘no’ in the list in this file11 for this type of feedback. The second285

type is where we do not know (as of now) how to decide some parameter286

e.g. right now we are asking the user whether the word is ābanta or not. In287

future, when the machine learns how to differentiate a word having ābanta,288

we will no longer need this input. In that sense, this type is negotiable. As289

the machine progresses, these input points can be removed. We have noted290

down the second type of input with a ‘yes’ and a note on how we can remove291

them in future. Veracity or otherwise of this list is open to suggestion.292

5.2 function.php293

Pāṇinian grammar works on many sūtras which are called for execution as294

and when a condition is satisfied. We have devised some functions based on295

those sūtras for repetitive work e.g. functions ‘prat’ (pratyāhāra), savarna,296

vriddhi, guna, dirgha, ṭi, mit etc. This file12 also holds the data sets e.g.297

vowels, consonants etc in addition to the functions.298

5.3 slp-dev.php and dev-slp.php299

They are transliterator codes which convert SLP1 transliteration to Devanā-300

garī and vice versa. These codes are borrowed and modified from Dicrunch301

code of Ananda Loponen13.302

5.4 subanta.php303

This is the code which actually processes the entered word and shows the304

result back to the user. The most intricate part about automatic declension305

machine have always been rule triggering, conflict resolution and ordering306

of sūtras. The first two issues will be dealt with at their respective places.307

The third is a bit lengthy, so its concept is discussed in the section of rule308

ordering. Details of rule order are available on our website14.309

11https://github.com/drdhaval2785/SanskritSubanta/blob/master/user_input.
pdf

12https://github.com/drdhaval2785/SanskritSubanta/blob/master/function.
php/

13https://github.com/drdhaval2785/sanskrit/tree/master/diCrunch/
14https://github.com/drdhaval2785/SanskritSubanta/blob/master/rule_order.

txt/

Prakriyāpradarśinī - an open source subanta generator 11

This code was first developed as a sandhi generator, and later on merged310

with subanta generator. Therefore, coding for all sūtras mentioned in sand-311

hiprakaraṇa is kept intact within this subanta generation machine. Most312

of them are even used for derivation processes also. User may note some313

pragṛhya related portion which is not relevant to subanta generation directly314

in the code, but we have retained it from the legacy of sandhi generator.315

For most of the code we have retained a ‘+’ sign between prakṛti and316

pratyaya. But when it comes to dvitvaprakaraṇa in tripādī, ‘+’ sign creates317

some disturbance in the function because of a coding issue which we could318

not overcome. So, for now we have removed + sign before dvitvaprakaraṇa.319

There are not many sūtras after dvitvaprakaraṇa, which need the identifica-320

tion of pada and pratyaya. Therefore, there is not much information which321

is lost by removing this ‘+’ sign.322

khari ca (8.4.55) is a cyclic process till all possible combinations are323

over. So, we have kept a while loop till there is no member satisfying the324

condition. Let us clarify it with an example.325

e.g. suhṛd + sup => suhṛdd + su (by anaci ca (8.4.47))=> suhṛdt + su326

(by khari ca (8.4.55)).327

At this stage, there still is a ‘d’ preceding ‘t’. Therefore, khari ca (8.4.55)328

finds its application once again. So, we have kept a while loop till there is329

no member satisfying the condition. By doing this, we could ensure that330

‘d’-> ‘t’ transition can still take place, and gives suhṛttsu.331

There is some gray area regarding application of paribhāṣā parjanyaval-332

lakṣaṇapravṛttiḥ (pa 119)15. If there is a combination of car + khar letter,333

should khari ca (8.4.55) apply, because ‘car’ is itself a subset of ‘jhal’?334

Though there is no difference in the form, the rule must apply because of335

parjanyavallakṣaṇapravṛttiḥ (pa 119) paribhāṣā, because the conditions for336

application of rule are satisfied. Should we display such cases or not is yet337

to be determined, but, anyway, the code is mature enough to handle both338

the choices.339

6 Variables340

AS uses variables very effectively in its structure. Several sañjñās are as-341

signed to the word and they are made use of at a later stage e.g. ‘sarva’ gets342

15 The paribhāṣā numbers refer to paribhāṣenduśekhara (1913)

12 D. Patel and S. Katuri

sarvanāma-sañjñā by sarvādīni sarvanāmāni (1.1.27) and AS uses them at343

places like sarvanāmnaḥ smai (7.1.14). In coding parlance, its close approx-344

imation is something like this:345

if (input word = sarva) { $sarvanama=1; }346

This assigns $sarvanama value of 1 like Pāṇini assigns it sarvanāma347

sañjñā.348

if ($sarvanama===1) { Do sarvanāmnaḥ smai (7.1.14) }.349

This checks whether $sarvanama is equal to 1 or not, and executes the350

code. It is similar to application of sarvanāmnaḥ smai (7.1.14) in case the351

word has sarvanāma sañjñā in Pāṇinian system.352

Thus, variables play very crucial role in the simulation of Pāṇini’s gram-353

mar. We have enumerated some of the variables which we have used in our354

code so that the reader may have a bird’s view about what is happening in355

the code.356

Examples of variables used in the code are: sup, pada, bha, input word,357

gender, transliteration, nadī, ṅī, ābanta, taddhita, dhātu etc. All the vari-358

ables can be seen in function.php and subanta.php. Their explanation and359

importance are given in the code itself as and when they are applied for the360

first time. Unless specified otherwise, the meaning of different values are: 0361

- no application, 1 - mandatory application and 2 - optional application.362

Variables are used for two purpose in our code: (1) to remember that363

some rule has been applied e.g. $Ap=1 would mean that the word is364

derived from some āp pratyaya (that rule has already applied) and (2) to365

remember that some rule has to be applied e.g. $sarvafinal=1 would mean366

that all rules specific to sarvanāmas have to be applied. We have chosen367

the variable names close to the corresponding grammatical notation so that368

the it is easy to understand the code.369

7 Rule Triggering370

There are specific prakriyās to be followed in grammar when specific con-371

ditions are satisfied. Therefore, appropriate rule triggering is of utmost372

importance for success of the code. We have used inbuilt functions of PHP,373

syntax of PHP, operators and some user defined functions to check whether374

the conditions for application of a rule are met or not.375

Prakriyāpradarśinī - an open source subanta generator 13

8 Sample Code376

We will show a sample code here along with its explanation so that the user377

may get the feel of what is happening in the background for fetching the378

required output.379

8.1 Rule triggering code380

/* ṅeryaḥ (7.1.13) */381

if (arr($text,‘/[a][+][ṅ][e]/’) && $pada=== “pratyaya” && $so ===382

“ṅe”)383

{384

$text = one(array(“a+ṅe”),array(“a+ya”),0);385

echo “<p class = sa >By ṅeryaḥ (7.1.13) :</p>”;386

echo “<p class = sa >������ (�.�.��) :</p>”;387

display(3);388

$ṅe=1; // 0 - This sūtra has not applied. 1 - This sūtra has been applied.389

}390

8.2 Rule triggering explanation391

1. if (arr($text,‘/[a][+][ṅ][e]/’) && $pada=== “pratyaya” && $so ===392

“ṅe”)393

In this section we check the following conditions – the suffix ($so) is ‘ṅe’,394

akāra is followed by ṅe and ṅe is a pratyaya. When these conditions are395

satisfied, the rest of the code is executed.396

2. { }397

The bracketed area is code which is to be executed.398

3. $text = one(array(“a+ṅe”),array(“a+ya”),0);399

In this section, we convert ‘a+ṅe’ to ‘a+ya’ i.e. we apply ṅeryaḥ sūtra.400

4. echo “<p class = sa >By ṅeryaḥ (7.1.13) :</p>”;401

echo “<p class = sa >������ (�.�.��) :</p>”;402

We display the sūtra which has been applied in this case.403

5. display(3);404

We display the word to user. (In Devanāgarī)405

6. $ṅe =1;406

We remember that the ṅeryaḥ has been applied to this word, for future407

use in code.408

14 D. Patel and S. Katuri

9 Conflict Resolution409

We have used usual Pāṇinian methods like apavāda, parasūtra etc. for con-410

flict resolutions as discussed in SK. Grammar books and their commentaries411

provide plenty of literature on conflict resolution. There are many parib-412

hāṣās also. The most important paribhāṣā dealing with conflict resolution413

is paranityāntaraṅgāpavādānāṃ uttarottaraṃ balīyaḥ (pa 38).414

This has been taken care of implicitly in rule ordering itself. We have415

tried to place parasūtra, nitya prakriyās, antaraṅga prakriyās and apavā-416

dasūtras before pūrvasūtra, anitya prakriyās, bahiraṅga prakriyās and ut-417

sargasūtras respectively. If there is conflict among para, nitya, antaraṅga,418

apavāda, the later wins. Such encounter has not happened in subanta gen-419

eration stage. Sometimes paribhāṣās are nitya / anitya. Sometimes pūr-420

vavipratiṣedha16 applies e.g. numaciratṛjvadbhāvebhyo nuṭ pūṛvavipratiṣed-421

hena (vā 4374). We have used pūrvavipratiṣedha whenever it is explicitly422

mentioned in the text of SK. Thus, generic application of metarules is not423

possible. So they will be applied in specific cases only. In addition, there are424

places where grammarians have difference of opinion. In such cases we have425

taken SK as authority17. Whatever has been accepted in SK is imitated in426

the code. If SK is silent on some topic, other available commentaries are427

explored for solution.428

9.1 Methods to avoid application of a rule429

1. Ordering apavāda, parasūtra, antaraṅga, nitya, aṅgavidhi, pratyaya430

alteration rules before the utsarga, pūrvasūtra, bahiraṅga, anitya and431

other rules. This way, the later group sees a modified string which432

does not satisfy criteria for their application.433

2. Remembering that a rule has to be applied in future e.g. variable $pur-434

vapara=1 means that the rule pūrvaparāvaradakṣiṇottarāparādharāṇi435

vyavasthāyāmasaṃjñāyām (1.1.33) will apply later on. When the turn436

of this rule comes we check whether variable $purvapara is equal to 1437

or not.438

16pūrvavipratiṣedha means processes where the preceding sūtra is given priority over
subsequent sūtra , violating the general rule.

17 See SK part 1 page 161 under the rule trestrayaḥ 7.1.53

Prakriyāpradarśinī - an open source subanta generator 15

3. Remembering that a rule is not to be applied in future e.g. if ato’m439

(7.1.24) has been applied, we store the value of variable $atom as 1440

and when conditions of application of svamornapuṃsakāt (7.1.23) are441

tested, we tell it not to apply the sūtra to words where ato’m (7.1.24)442

has been applied.443

9.2 Notes on issues in conflict resolution444

With this background, let us examine some of the issues which cropped up445

during process of simulating subantaprakaraṇa:446

1. ārambhasāmarthya.447

supi ca (7.3.102) is parasūtracompared to nāmi (6.4.3). Even then, it448

does not apply in case of nāmi (6.4.3) even though it is parasūtra be-449

cause of ārambhasāmarthya. So, due care needs to be taken in coding450

such cases according to the explanation given in grammar texts.451

2. anityatva of paribhāṣās.452

For example, sannipātaparibhāṣā does not apply in case of ṅe pratyaya.453

supi ca (7.3.102) applies in that case. kaṣṭāya kramaṇe (3.1.14) is an454

example of anityatva18 of this paribhāṣā. If we code for such parib-455

hāṣās to apply in every case, this form will get distorted. The better456

alternative is to apply such paribhāṣās only in cases where SK has457

validated its applicability.458

3. sasajuṣo ruḥ and treatment of sakāra.459

Following code blocks should be placed before sasajuṣo ruḥ (8.2.66)460

for execution of code, otherwise their ultimate sakāra may take461

sasajuṣo ruḥ (8.2.66) to give undesired forms. - 1. etattadoḥ462

sulopo’ko’nañsamāse hali (6.1.132), 2. so’ci lope cetpādapūraṇam463

(6.1.134), 3. aniditāṃ hala upadhāyāḥ kṅiti (6.4.24) for sraṃs, dvaṃs464

etc 4. vasusraṃsudhvaṃsvanaḍuhāṃ daḥ (8.2.72). These code blocks465

have to be kept before actual execution of sasajuṣo ruḥ (8.2.66).466

4. ṇatva.467

18 This means the same rule applies with some condition at some place, but does not
apply at some other place even if the same condition is satisfied.

16 D. Patel and S. Katuri

It is difficult to identify where pada ends and another starts, espe-468

cially in samāsas. Therefore, the conflict resolution among sūtras469

ekājuttarapade ṇaḥ (8.4.12) / raṣābhyāṃ no ṇaḥ samānapade (8.4.1)470

/ aṭkupvāṅnumvyavāye’pi (8.4.2)is extremely difficult until samāsa is471

parsed effectively.472

10 Notes on some grammar issues and their coding473

implications.474

This section is devoted to brief mention of issues we encountered during475

development of this software, which may serve as a reference point to the476

future researchers in case they face the same difficulty in implementation.477

1. Do-while loop for sapādasaptādhyāyī.478

pūrvatrāsiddham (8.2.1) sūtra creates two separate data spaces for sū-479

tras of AS namely (1) sapādasaptādhyāyī and (2) tripādī. There are480

two other sūtras which are also used to create separation of data spaces481

like asiddhavad atrābhāt (6.4.22) and ṣatvatukorasiddhaḥ (6.1.86)19.482

We have not treated these two sūtras here, because they are not ex-483

plicitly treated in subantaprakaraṇa of SK. So we will keep our dis-484

cussion focused on pūrvatrāsiddham (8.2.1) only20. To put it it very485

basic terms, pūrvatrāsiddham (8.2.1) makes provision that the rules486

in sapādasaptādhyāyī have no fixed order of application and those of487

tripādī have to be applied after all possible sapādasaptādhyāyī rules488

have applied to the word. Even inside tripādī, the rules are to be ap-489

plied sequentially. For sapādasaptādhyāyī, we have created a do-while490

loop which checks whether the word entering and word coming out491

of this loop is the same or not. It continues till both are the same492

(i.e. until there is no rule in sapādasaptādhyāyī which can apply and493

alter the word). In most of the cases, no looping of sapādasaptādhyāyī494

is needed. In other cases, only one looping of sapādasaptādhyāyī is495

needed. This is quite low burden on code as compared to checking496

4000 rules every time. After that, it moves on to tripādī, where the497

19 See Goyal et al. (2009) section 3.6
20 ‘na lopaH supsvarasajhjjhātugvidhiṣu’ is dealt with in the code at places where it is

applicable.

Prakriyāpradarśinī - an open source subanta generator 17

rules are usually written in sequence of their appearance in AS, so that498

the rules apply sequentially.499

In this approach, there is a limitation. There are certain rules in500

sapādasaptādhyāyī, which can apply only once. For such rules, we501

have applied them before do-while loop or we have specified in do-while502

loop that this rule is to be applied when the code is being executed503

for the first time only by specifying $start=1. When the code comes504

for execution for second time, we check whether $start===1. In the505

second loop $start has value of 2 and therefore, this rule is not applied506

for second time. This is, in a nutshell, what we do to ensure secrecy507

of data space of sapādasaptādhyāyī and tripādī.508

2. asiddhatva of ṣakāra for applicability of sasajuṣo ruḥ (8.2.66).509

There are two possible cases (1) dhātus - pipaṭhiṣ, āśiṣ. (2) not dhātus510

- doṣ, dhanuṣ. The usual user tendency is to enter ṣakāra at the end511

of such words. If we proceed with this word, there is no sakāra at the512

end of the word, and therefore sasajuṣo ruḥ (8.2.66) can not apply. To513

circumvent this, ṣakāra has to be converted back to sakāra for sasajuṣo514

ruḥ (8.2.66)’s application. Similar situation appears in case of vivakṣ,515

didhakṣ, pipakṣ etc. skoḥ saṃyogādyorante ca (8.2.29) does not apply516

because kutva is asiddha to kalopa. Similarly, in case of cikīrṣ - ṣatva517

is asiddha to rātsasya (8.2.24). Therefore, rātsasya (8.2.24) sees cikīrs518

only and not cikīrṣ. Thus, it causes elision of last ṣakāra. For such519

typical cases, patches have to be applied in the code.520

3. All pratyaya alterations have to be completed before applying sūtras521

which remove it marker, otherwise it would not be possible to check the522

exact pratyaya e.g. rāma+ṅe -> rāma+ya by ṅeryaḥ (7.1.13) sūtra.523

If we had removed the it marker ‘ṅ’ before application of ṅeryaḥ, the524

situation would have been rāma+e and we would have tough time525

finding out whether this is a ṅit pratyaya or not.526

4. attributes of stem and suffix.527

It is of vital importance to remember the attributes of stem and suffix528

e.g. sarvanāma, sarvanāmasthāna, it markers, previous application529

of some sūtra, bhāṣitapuṃskatva, tṛjvadbhāva, original input word,530

sambuddhi, ṣaṭ, nadī sañjñā etc. Some of them are discussed here in531

18 D. Patel and S. Katuri

brief. These attributes may be absent, present or optionally present532

in grammar. Because of these three types, it is not advisable to use533

boolean variables for attributes, as they cater to only presence and534

absence.535

Status of sarvanāma - It is important to know whether the word is a536

sarvanāma, not a sarvanāma or optionally a sarvanāma. With the help537

of sarvādi gaṇa and some user input, we decide whether $sarvafinal538

= 0 (not sarvanāma), 1 (sarvanāma) or 2 (optionally sarvanāma).539

Sometimes, we need to add a member at a later stage in a gaṇa. e.g.540

‘sva’ is pronoun only if it is used not in the meaning of jñāti or dhana.541

If we add ‘sva’ directly into sarvanāma set, it will give erroneous542

results if it is used in sense of jñāti or dhana.543

it markers play an important role in derivation process e.g. aco ñṇiti544

(7.2.115) will apply only when the pratyaya has ‘ñ’ or ‘ṇ’ as it marker.545

Similarly there are many rules where we have to know about it marker.546

It is wise to remember the first input word. This may be needed after547

some time e.g. hali lopaḥ (7.2.113) mandates elision of ‘id’ of ‘idam’548

when certain conditions are met. Till this stage, ‘idam’ is already549

converted to ‘ida’ by tyadādīnāmaḥ (7.2.102) and ato guṇe (6.1.96).550

Therefore we need to check whether this ‘ida’ was derived from ‘idam’551

or not.552

sambuddhi forms are different than regular forms. Therefore, it is553

mandatory to remember whether the pratyaya is sambuddhi or not.554

e.g. eṅhrasvātsambuddheḥ (6.1.69) will only apply in case of sambud-555

dhi.556

5. stoḥ ścunā ścuḥ (8.4.40) and śāt (8.4.44).557

This case is different form of expression than regular ABC-> ADC558

context based transformation. Therefore, special treatment is needed.559

In this case, no specific order of letters is mandated. This rule applies560

in case of juxtaposition rather than order. Therefore, a separate code561

is needed to handle this rule. Similarly ṣṭunā ṣṭuḥ (8.4.41) and na562

padāntāṭṭoraṇām (8.4.42), anāmnavatinagarīṇāmiti vācyam (vā 5016)563

and toḥ ṣiḥ (8.4.43) need specific treatment.564

6. na lumatāṅgasya (1.1.63).565

Prakriyāpradarśinī - an open source subanta generator 19

This rule prevents conversion of padānta kim to ka. Explanation of566

SK is given a place in derivation scheme. na lumatāṅgasya (1.1.63)567

also bars application of pratyayalope pratyayalakṣaṇam (1.1.62) - so568

we have to remember whether luk has happened or not. We should569

also remember that na lumatāṅgasya (1.1.63) is anitya paribhāṣā. It570

does not apply in case of tricaturoḥ striyāṃ tisṛcatasṛ (7.2.99)21.571

7. sthānivadbhāva.572

There is a great deal of literature on what is sthānivadbhāva and what573

is not in SK. Therefore, we have not treated sthānivadbhāva generi-574

cally. We have coded according to it only when the derivation demands575

such intervention to be made.576

8. nimittāpāye naimittikasyāpāyaḥ.577

When doing elision by saṃyogāntasya lopaḥ (8.2.23), we have to be578

ready for application of nimittāpāye naimittikasyāpāyaḥ.579

9. Aberrant behaviour of rules.580

vṛddhyauttvatṛjvadbhāvaguṇebhyo num pūrvavipratiṣedhena (vā 4373)581

mandates that the numāgama gets precedence over rules mentioned582

here by pūrvavipratiṣedha. Similarly, numaciratṛjvadbhāvebhyo nuṭ583

pūṛvavipratiṣedhena (vā 4374) mandates that nuḍāgama gets prece-584

dence over rules mentioned here by pūrvavipratiṣedha. These rules are585

exception to the general precedence of parasūtra.586

Sometimes grammarians try to justify the derivation of a śiṣṭa word by587

‘akṛtavyūhāḥ pāṇinīyāḥ’.. An example of it can be seen in application588

of acaḥ (6.4.138).589

10. Difference of opinion amongst grammarians. There is a difference of590

opinion among grammarians regarding prarīṇām22 and varṣābhū. We591

have accepted SK’s position.592

11. Difficulty in coding.593

rutva can happen any time in between code. Therefore,594

upadeśe’janunāsika it (1.3.2) which elides ukāra of ‘su!’ might not595

21 See pp. 196 of SK part 1.
22 See SK part 1 p. 220

20 D. Patel and S. Katuri

work properly. Therefore, a special patch is made for rutva to convert596

it to repha.597

ḍhralope pūrvasya dīrgho’ṇaḥ (6.3.111). It is mandatory to remember598

the repha / ḍhakāra where this is to be applied. Otherwise, all the599

hrasva + r/ḍh combinations in the word would be converted to dīrgha600

+ r/ḍh. For this purpose, we have added an artificial sign # before601

repha or ḍhakāra where this rule has to be applied.602

bhāṣitapuṃskatva is very difficult to know from words, and many603

prakriyās depend on whether the word is bhāṣitapuṃska or not. This604

calls for user input.605

In case of verbs, users may adopt different conventions for writing606

a verb. For example, user may insert ancu, añcu, anc, añc, ancu!,607

añcu! anything. Such behavior is seen more frequently in case of608

verbs with anubandhas and especially with verbs having a nasal letter609

in it. So, the code has to be resilient enough to account for such610

aberrant behavior of users.611

Keeping ato guṇe (6.1.97) applicable to each sūtra creates many issues612

like interfering with akaḥ savarṇe dīrghaḥ (6.1.101). Right now, ato613

guṇe (6.1.97) is used in close conjunction with the rules where grammar614

textbook mandates it and not as a separate code block.615

11 User input616

By the words user input, we mean ‘getting desired input from user for617

correct declension of a word’. For a good code, this has to be at bare618

minimum to enhance user experience. So we have decided what user input619

fields are negotiable ones and which are not in this file23. For user input, we620

use radio buttons. In future, if there is a case where we must check multiple621

parameters simultaneously, multiple check boxes can also be employed. The622

documentation for user input is stored in ajax requirements.docx e.g. if623

ajax.php uses $_GET[‘cond1_2’]===2, it means that condition 1.2.2 in624

the document is satisfied. The user can easily make out from code and ajax625

requirements.docx what we check out in user input.626

23https://github.com/drdhaval2785/SanskritSubanta/blob/master/user_input.
pdf

Prakriyāpradarśinī - an open source subanta generator 21

12 Limitations627

After discussion on methodology followed by us, it would be of interest if we628

place before the researchers some problem areas which we encountered, so629

that they may be explored further with grammar texts and solutions may630

be arrived at.631

1. Difficulty in identifying attributes. Correct derivation depends on cor-632

rect identification of attributes, but it becomes extremely difficult to633

identify those attributes in some cases. In such cases, user input may634

be our only hope.635

nityastrīliṅgatva has to be taken as user input, because it is difficult to636

guess nityastrīliṅgatva by merely looking at the word. Some detailed637

analysis of feminine words may help in this regard.638

iyaṅuvaṅsthānatva24 presupposes the knowledge whether the word639

meets the criteria for application of ‘iyaṅ’ or ‘uvaṅ’. It is difficult640

to analyze this beforehand.641

There is a perpetual problem whether (1) one should retain “ṅi”, “ṅe”642

etc till the prakriyās with ṅittva start or (2) should we convert them643

to ‘i’, ’e’ and remember that it has ‘ṅ’ as it. Right now, the former644

method is used preferably. upasarjanībhūtatva / pradhānatva – It is645

very important to know these qualities in samāsas. Right now, we are646

not able to analyse samāsas, so we have taken user input in this case.647

As kvin / kvip pratyayas do not leave any mark on the word, they648

are difficult to identify. Right now, more or less we are listing out649

kvinnanta and kvibanta words manually, which may not be workable650

in long run. We will have to think of some alternative to overcome651

this problem.652

It is difficult to differentiate ābantatva or ākārānta dhātu from merely653

looking at the word. We will have to understand ābanta pratyayas as654

well as dhātu prakriyās to code properly for them.655

abhyastatva. It is difficult to code for abhyastatva, till abhyāsa prakriyā656

is taught.657

24 AS 1.4.4

22 D. Patel and S. Katuri

2. Problems with dhātus. It is difficult to identify dhātus. Even if we en-658

list all dhātus in dhātupāṭha, there are nāmadhātus and sanādi dhātus659

too, which make it difficult to identify where kṛdatiṅ (3.1.93) is to be660

applied. Right now, we are looking for ‘īy’ to identify nāmadhātus.661

e.g. eḍakīyati. It may need further revision when nāmadhātus are662

taught to the system.663

One needs to find all possible dhātus starting with “ṛ” to decide664

whether upasargādṛti dhātau (6.1.91) is applicable or not. Even then,665

special treatment for nāmadhātus is needed because the rule is optional666

for nāmadhātus.667

It is equally difficult to identify prātipadikas, because there are many668

pratyayas which may derive a new noun from a dhātu. Some of them do669

not even leave a mark morphologically like kvip / kvin etc. Therefore,670

it is really difficult to identify prātipadikas and separate them from671

dhātus.672

3. Issues of morphologic similarity.673

Sometimes the prakriyā is specified for word ending with some word674

e.g. if a prakriyā for ‘ahan’ is specified and we search for string ‘ahan’675

only, the prakriyā for ‘sūryāhan’ may not work well. Therefore, we676

have to think about any morphological change which the word might677

undergo under the influence of rules of sandhi too.678

As we work with string of letters in coding, it is difficult to isolate679

words ending with ‘han’ for applicability of inhanpūṣāryamṇāṃ śau680

(6.4.12). ‘han’ at the end of a word can also be part of ‘ahan’, where681

this rule would be erroneously applicable. User input or exhaustive682

enumeration will be needed for clarity.683

4. Issues of ekādeśa.684

ādyantavadekasmin (1.1.21) rule is difficult to code, because right now685

we are keeping a ‘+’ sign in between the stem and suffix. It is difficult686

in current scheme of things to code properly to remember that the687

ekādeśa behaves as end of the previous one and the start of the next688

one. Another question which deserves attention is how should ekādeśa689

be displayed? e.g. ādguṇaḥ (6.1.87) mandates ekādeśa. What should690

we display in case of ‘rāma+i’? ‘rām+e’ or ‘rāme+’ ? Let us show691

Prakriyāpradarśinī - an open source subanta generator 23

our approach with example. In case of ādguṇaḥ (6.1.87), the term692

‘āt’ means that the ādeśa is after akāra. So, we have kept it ‘rām+e’,693

whereas akaḥ savarṇe dīrghaḥ (6.1.101) mandates replacement of ‘ak’.694

So, we have kept ‘rāmā+t’.695

5. Issues in contextual derivation. As we are not working with sentences696

for now, it is difficult to analyse attributes which depend on sentences697

e.g. whether there is anvādeśa or not in case of derivation of asmad698

/ yuṣmad. Currently only words are being treated and not sentences,699

so pāda related functions are not applied for now.700

6. Different derivation in different meanings. e.g. the word sudhī can701

be analysed as suṣṭhū dhīryasyāḥ, suṣṭhu dhyāyati, suṣhṭhu dhīḥ. The702

derivation differs in all the situations. Therefore it is mandatory to703

take user input to specify which of these meanings he intends to use.704

7. Listings. Various lists (over and above gaṇas) are needed for proper705

declention of a word e.g. ugit dhātus, idit dhātus, ṝkārānta words etc.706

Exhaustive lists remain to be made for such words.707

13 Scope for Future work708

1. We have left out accents e.g. caturanaḍuhorāmudāttaḥ (7.1.98) – we709

have coded only for ‘ām’ and left out ‘udāttaḥ’. We will have to treat710

the accent at a later stage for sure, because the strīpratyayas and711

taddhitapratyayas have very peculiar effect on accent, otherwise mor-712

phologically ṅīp, ṅīṣ, ṅIn give the same forms.713

2. The sūtras which we have not coded for are specifically mentioned in714

code subanta.php. The user is advised to refer to them for further715

details.716

3. sūtras which involve interpretation of samāsas are right now on user717

input mode. Once samāsa interpretation is taught to the machine,718

they can be properly coded.719

24 D. Patel and S. Katuri

4. We have prepared a list with a hint whether the requirement for user720

input can be done away with or not25. This can serve as a guide for721

future researchers. The future attempts should be primarily focused722

on removing the unnecessary user input from the machine. Once this is723

achieved, researchers can take up the more challenging task of handling724

the non negotiable kind of user input.725

14 Conclusion726

AS has a complex system of interrelated rules. Various authors have tried in727

past to reorganize the order of AS for prakriyāgranthas. Similarly there is a728

need to reorder the AS for easy implementation of computational simulation729

of AS. NLP order model and NLP order hypothesis presented in the present730

work is a step in that direction.731

25https://github.com/drdhaval2785/SanskritSubanta/blob/master/user_input.
pdf

References732

Bhatta, Nagesha. 1913. Vaidyanāthakritagadatikāsamvalitaḥ Paribhāṣen-733

duśekharaḥ. Ed. by Hari Narayan Apte. Anandāśram Press.734

Cardona, George. 2009. “Pūrvatrāsiddham and āśrayāt siddham.” In: Studies735

in Sanskrit Grammar. Ed. by George Cardona, Ashok Aklujkar, and736

Hideyo Ogawa. DK Printworld, pp. 123–62.737

Dīkṣita, Bhaṭṭojī. 1910. Siddhāntakaumudī of śri Bhaṭṭojī Dīkṣita with738

the commentary śri Bālamanoramā of śri Vāsudeva Dīkṣita. S. Can-739

drasekhara Sastrigal, Teppakulam.740

Goyal, Pawan, Amba Kulkarni, and Laxmidhar Behra. 2009. “Computer741

Simulation of Aṣṭadhyāyī: Some Insights.” In: Sanskrit Computational742

Linguistics 1 & 2. Ed. by Gérard Huet, Amba Kulkarni, and Peter Scharf.743

Springer-Verlag LNAI 5402, pp. 139–61.744

Hyman, Malcolm. 2009. “From Pāṇinian Sandhi to Finite State Calculus.”745

In: Sanskrit Computational Linguistics 1 & 2. Ed. by Gérard Huet, Amba746

Kulkarni, and Peter Scharf. Springer-Verlag LNAI 5402, pp. 253–65.747

Scharf, Peter M. 2008. “Modeling Pāṇinian Grammar.” In: Sanskrit Com-748

putational Linguistics 1 & 2. Ed. by Gérard Huet, Amba Kulkarni, and749

Peter Scharf. Springer-Verlag LNAI 5402, pp. 95–126.750

—. 2009. “Rule Selection in Aṣṭādhyāyī’ or Is Pāṇini’s Grammar Mechanis-751

tic?” In: Studies in Sanskrit Grammar. Ed. by George Cardona, Ashok752

Aklujkar, and Hideyo Ogawa. DK Printworld, pp. 319–50.753

Appendix : Sample derivation of ramā754

Attached below is the derivation of ‘ramā’ word 26755

26as on 27.9.2014 from http://lanover.com/lan/sanskrit/subanta.php?first=ramA&
gender=f&tran=Devanagari&cond2_1=2&step=2_1_2

25

26 16th WSC:SCL

Figure 2
Sample Derivation: Part 1 of 2

Bibliography 27

Figure 3
Sample Derivation: Part 2 of 2

