Sanskrit and Computational
Linguistics

Selected papers presented at the 16!* World Sanskrit Conference
28 June — 2 July 2015, Silpakorn University, Bangkok

Editors
Vineet Chaitanya
Amba Kulkarni

February 17, 2015

s Prakriyapradarsini - an open source Ssubanta
0 generator

10 DHAVAL PATEL and SHIVAKUMARI KATURI

11 Abstract: Prakriyapradarsini is an attempt to imitate subanta deriva-

12 tion process by prakriya method given in Siddhantakaumudi (SK) of
13 Bhattojt Diksita (1910) using an open source PHP code. Our goal is
14 to imitate SK regarding applicability of rules and give the user step
15 by step derivation. The machine handles stripratyayaprakarana also.
16 In theory, there is no fixed order of rules for derivation process in
17 sapadasaptadhyayr of Astadhyay1r, but if we analyze SK for practi-
18 cal application of rules, rules are applied in some kind of order. The
19 authors have tried to find out the optimum order of application of
20 rules from Sanskrit NLP perspective and are proposing an ‘NLP or-
21 der model’ and ‘NLP order hypothesis’ for coding subantaprakarana
22 of SK. This is extremely beneficial from coding perspective, because
23 it would decrease the iterations compared to the prevalent ‘conflict
24 resolution model’ e.g. for a 10 step process, in the ‘conflict resolution
25 model’ computer will check whether any of 4000 odd sutras are ap-
26 plicable or not for 10 times and resolve the conflict i.e. >40000 event
27 checking, whereas in ‘NLP order model’ it would check the criteria for
28 application of sutras chronologically i.e. only with marginally above
29 4000 event checking.

30 The present paper tries to analyze the necessity of user input in sub-
31 antaprakarana of SK for proper declention. The paper also discusses
32 some of the issues in rule ordering and conflict resolution for Sanskrit
33 NLP from grammatical perspective.

34 Keywords: Astadhyayi, Computational Linguistics, Con-

35 flict Resolution, Natural Language Programming, NLP

36 Order Model, NLP Order Hypothesis, Panini, Prakriya,

37 Prakriyapradarsini, Siddhantakaumudt

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

2 D. PATEL AND S. KATURI

1 Introduction

Prakriyapradarsini is an attempt to imitate the derivation process given in
Siddhantakaumudi (SK) of Bhattoji Diksita using an open source PHP code.
Our goal is to imitate Siddhantakumudi in terms of applicability of rules.
The main difference between the present approach and earlier approaches
for derivation is in the methodology.

The present approach uses ‘NLP order model’ in contrast to ‘Conflict
resolution model’ employed earlier. The details about this model will be
discussed in section 4. This machine also handles stripratyayas. The other
difference is regarding the licence of the code. This code is an open source
code which anyone can use and modify according to his specific need. We
have spent enough time reinventing the wheel in Sanskrit NLP world. It is
high time to move on to an open source world.

2 Review of literature

In all available literature regarding Sanskrit NLP, Goyal et al. (2009) has
been found the most relevant to the pursuit at hand, therefore it has been
commented upon.

Introduction of that paper mentions that one has to be precise in what
one wants to simulate. We have taken SK as base. Sutras and wvartikas
which are accepted in SK have been incorporated in the code. Section 2 of
the same paper raises an issue that Scharf’s (2008) method closely follows SK
and not that of Astadhyay1t (AS). Our present endeavour also is a simulation
of SK, but there is kind of a reconciliation of AS method and SK method.
The only place where we have some liberty in order is sapadasaptadhyayi®,
whereas order of tripadi? is more or less unchangeable for any researcher. We
have deployed one do-while loop for most of the rules of sapadasaptadhyayz,
which continues till the input and output are same i.e. till there is no rule
in sapadasaptadhyayi which can apply now. So, it works like AS method,
but if the rules are in random order, the rules will loop over several times
(at least 5-6 times as per our estimate). This is a heavy cost on the code
and server. It is better if we arrange the rules in the method specified in
‘NLP order model’ which closely follows a prakriya method to economize

1 AS chapter 1-1 to 8-1
2 AS chapter 8-2 to 8-4

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 3

on time and space. The words ‘NLP order model’ refer to an alternate
order of rules where rules are organized in an order which is more suited for
Computational Linguistics related coding as compared to AS order of rules.

While the observation ‘AS models generation’ is true, we would like to
draw attention that sometimes the declension varies according to speaker’s
intention e.g. whether ‘priyatri’ would mean priyah trayaeh yasya sah or
priyah tisrah yasya sah depends on speaker’s intention (SK on 6.4.4). The
derivation also varies according to it. Therefore, it is mandatory that we
take user input on places which we find ambiguous or not amenable to cod-
ing, especially in machines which do single word derivation with no context
whatsoever.

According to section 4 of Goyal et al. (2009), simulation of Sanskrit
grammar involves the following factors. (1) Interpretation of sutras using
the metalanguage described by Panini in the AS, (2) faithful representa-
tion of sutras, (3) automatic triggering of rules and (4) automatic conflict
resolution. On these parameters, our machine works as mentioned below.

1. For interpretation, we have used explanation offered by SK.

2. Sutras are represented as faithfully as possible. As and when any
wrong output is encountered, the code is re-inspected and necessary correc-
tions are made.

3. Automatic triggering of rules is done as and when the necessary
conditions are satisfied.

4. For conflict resolution, apavada, parasutra, angakarye and alter-
ation in pratyayas are given priority, which takes care of majority of con-
flicts. In case any conflict remains, it also is resolved by altering the order
of the rule application. Unlike Panini’s structure, computer language codes
are almost always executed in a linear sequential manner. Therefore, per-
haps the most favoured mode to stop execution of code is to place the code
in ‘if blocks’ Considering the number of sutras, the places of conflict are
relatively very few, and most of the time, there is ample grammatical liter-
ature to resolve the conflicts. So, in our opinion, finding the correct order
for computer execution is a possibility within human reach. If, after all
possible re-ordering, the conflict still remains, we can add a patch for that
particular word. This is the fundamental theory behind restructuring the
order of rules in ‘NLP order model’.

Section 4 of that paper mentions usage of regular expressions to rep-
resent patterns and positions to represent right and left context and alter

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

4 D. PATEL AND S. KATURI

string by them. Slight modification in the present system is the use of array
rather than string. Its advantage is that the array can store multiple strings
e.g. it can store both vak, vag by application of va’vasane (8.4.56) for fu-
ture manipulation. If we store the output in a string rather than an array
and modify that string by rules of grammar, it becomes difficult to handle
optional forms. For rule triggering, we have also used regular expressions
and two custom made functions ‘sub’ and ‘arr’.

Section 6 of the same paper highlights that rule sasajuso ruh (8.2.66)
is an exception to purvatrasiddham (8.2.1) metarule and its implication in
coding. SK specifically mentions that rutva is not asiddha to some rules
which require rutva as triggering event3. Therefore, we have placed sasajuso
ruh (8.2.66) at two places. First place is before the application of these rules.
Second is its usual tripadi place. To prevent re-application of the sutra, we
have remembered that once the rule has been applied. We check while
applying for second time whether the rule has been applied already earlier.
If yes, we do not apply it again, otherwise the rule in tripadi is applied.

Section 7 of the same paper points out a question regarding repeat ap-
plication of yadapah (7.3.113) cyclically in rama + rie because of nittva of
pratyaya. To circumvent this cyclical application of rules (when the rule
should apply only once), in the do-while loop we increase $start by one,
every time the code makes a loop. In the condition for the rule triggering,
we ask whether variable $start is equal to 1 or not. If it is 1, then only the
rule applies. Otherwise, it does not apply.

Scharf (2009) has evaluated conflict resolution in AS with four different
principles and concluded that ’determining which rule has precedence in the
shared domains is not reducible to a single principle’. Therefore, we have
adopted the conflict resolution explanations given in SK and coded according
to it. Cardona (2009) has analysed the principle of purvatrasiddham and
its allowable exceptions in grammar. It is mainly in tandem with what
traditional grammar texts offer. We have coded properly for it as far as
subanta generation is concerned.

With this background in mind, let us proceed with the paper.

% See SK on ato roraplutadaplute (6.1.113), SK part 1 page 99.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

161

162

163

164

165

166

167

168

169

170

171

172

173

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR)

3 Overview of the project

The project aims at creating an open source PHP code* which would derive
noun forms of a given word step by step according to SK. At places, we have
also adopted the explanation offered by SK and displayed it to the user to
make the derivation easier to understand. But, in some cases, SK explains
why a particular rule is not applicable. If it places some constraint on code,
we have left out that explanation in display.

The process within the code is in SLP1 transliteration for ease of coding
because it assigns a single letter to all Devanagari characters as has been
mentioned by Hyman (2009). This minimizes ambiguity. For example,
YS9 and g both would have ‘prau’ in their IAST / HK transliteration,
whereas SLP1 for them would be ‘prauga’ and ‘prOQa’. This also eases out
transliteration to Devanagari and other encodings.

User can enter the words in IAST, SLP1 or Devanagari transliteration.
A peculiar problem arises when the user enters a halanta word in Devanagari.
Because of variety of input methods, there are sometimes associated white
spaces with halanta marker. So, before processing, one has to remove the
white spaces first with help of code. The sutra display to user is bilingual
in Howard Kyoto protocol and Devanagari. The word under derivation is
shown in Devanagari. At later stage, if need be, this can also be shown in
SLP1, TAST or HK or any other transliteration method.

If the machine needs to know some additional parameters based on the
word given, ajax.php is called and it gives additional fields in the front
end for user to fill. Then ultimately subanta.php is fired and the output is
displayed to user.

We have followed the following style pattern, so that the display conveys
additional information regarding the sutra: Red colour for headings and
error messages, gray colour for vidhi sutras or apavada sutras, green colour
notes. Thus, the user can get the information regarding sutra type also from
the display without much difficulty.

In Sanskrit grammar, there are certain words which are nityadvivacana
or nityabahuvacana or whose derivation is same in all three lirigas. We have
listed some of such words as and when they occur in SK and display the
user the information if some pratyaya can not apply to this word.

‘https://github.com/drdhaval2785/SanskritSubanta

174

175

176

178

179

180

181

182

184

185

186

187

189

190

191

192

194

195

196

197

198

200

201

202

6 D. PATEL AND S. KATURI

Certain fonts do not display upadhmaniya or jihvamuliya properly.
Therefore, for proper display we have chosen Siddhanta® font as our de-
fault font. We have used ‘I’ to denote anusvara. A brief note regarding
some special characters used in code can be seen here®.

Sometimes, we had to do things not mandated by SK to accommodate
user tendency. For example, we have observed that the users usually enter
visarga instead of sakara at the end. We have accepted that user behavior
and modified the code to give back the sakara in prakriya.

Discussion in this paper would not be according to the order of sutras
in SK or AS, but according to the sequence of code subanta.php’ in which
sutras are applied in this machine.

4 NLP order model and NLP order hypothesis

Though Panini’s rule order is treated as very strict, in our opinion there is
a possibility of re-ordering them for ease of computational linguistics. We
propose the ‘NLP order model’ and suggest an alternative rule order for
subantaprakarana®.

As the sutras have a kind of grouping based on similarity or conflict,
there is some free space in which the sutra order can be moved up / down
in machine. Based on our experience, we put forward this ‘NLP order
hypothesis’ for deciding rule ordering as per ‘NLP order model’ for
Computational linguistics.

Let us suppose that sutras are in the order

A1, A2 ..., A(k), .., A(n)

The Range of freedom which the sutra A(k) enjoys in term of moving
it upwards or downwards in an algorithm for application to input string
is equal to the range (A(min), A(max)), where A(min) is the last
previous sutra which can alter the input string for A(k) and make A(k)
inapplicable for any possible word in Panini’s grammar. A (max) is the first
next sutra until which no other sutra can alter the output string of A(k) for

*http://www.svayambhava.org/ www.svayambhava.org/

Shttps://github.com/drdhaval2785/SanskritSubanta/blob/master/encoding_
notes.txt/

"https://github.com/drdhaval2785/SanskritSubanta/blob/master/subanta.php/

®https://github.com/drdhaval2785/SanskritSubanta/blob/master/rule_order.
txt/

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 7

any possible word of Panini’s grammar. So, it will be possible to decide
the proper position of most of sutras for computational linguistics with this
range in future. If there are still some places where such rule ordering gives
wrong results, patches may have to be applied.

Let us clarify how we came to such a conclusion with a working example.

If we have a look at the derivation of rama word in SK, the following
sutras are important.

rama + ne -

svaujasamautchastabhyambhisniebhyambhyasnasibhyambhyasnasosamnyossup

(15), neryah (240) and supi ca (291). The numbers in bracket indicate their
position in our code based on ‘NLP order model’.

Upto this point, we have taught the machine that the order is svau-
jasamautchastabhyambhisriebhyambhyasnasibhyambhyasnasosamnyossup (15),
neryah (240) and then supi ca (291). At this point the range of sutra reryah
is (15,291).

When we move forward in the declension and reach rama + bhyas, there
is a possibility of application of bahuvacane jhalyet (290). Now as a coder,
we will have to decide where we should put this rule. At this juncture, we
can see that supi ca (7.3.102) is the rule which can alter the output string
(rama+bhyas -> rama+bhyas) and render bahuvacane jhalyet inapplicable
(no akara at end). Therefore, we can not place bahuvacane jhalyet after supi
ca, otherwise, bahuvacane jhalyet will see an altered string (rama+bhyas)
and it can not apply. Therefore, we have to put it just before supi ca
i.e. at place 290. Thus, our code sequence will be svaujasamautchastab-
hyambhisniebhyambhyasnasibhyambhyasnasosamnyossup (15), neryah (240),
bahuvacane jhalyet (290) and supi ca (291). The lower limit upto which
this code can be shifted is svaujasamautchastabhyambhisnebhyambhyasria-
sibhyambhyasnasosamnyossup (15). Thus we have a range for this sutra
neryah as (15,290). As the code progresses, the interval gets shortened.

Let us take the derivation of ‘tad’ pulliriga, to see how the range gets
minimized as the code progresses.

In this code the relevant rules for our discussion are tyadadinamah
(7.2.102), ato gupe (6.1.97) and bahuvacane jhalyet (7.3.103). When we
want to place tyadadinamah at its proper place, it has to be before ato
gune, which also should be before bahuvacane jhalyet. Therefore their inter
se applicability would be tyadadinamah -> ato gune -> bahuvacane jhalyet.
Out of which tyadadinamah and ato gune are treated in a single piece of

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

260

261

262

263

264

266

267

268

269

8 D. PATEL AND S. KATURI

code. Therefore they are applied at specified place let’s say 191th place
looking at other exigencies. As is obvious, they should be placed before
bahuvacane jhalyet, because otherwise the word tad + bhyas woould not
have conditions suitable for bahuvacane jhalyet to apply (it would have tad
+ bhyas instead of expected ta + bhyas). So, the range of sutra rieryah
has become (191,290). Similarly the range bahuvacane jhalyet has become
(191,291) instead of earlier (15,291). In this way, the location of sutra be-
comes more and more restricted as the code advances. This way we can
keep on playing with the location of sutras as SK advances. It is beyond
our mathematical capacities, but we suggest that if the sequences of appli-
cation of rules in prakriya granthas like SK are evaluated mathematically,
near perfect rule order with least possible iteration loops may be derived
mathematically.

If at any given point, there is a difficulty in identifying proper location
of a sutra, and alteration in position gives erroneous forms, we can create a
patch (some code to sort the issue out) for the same and overcome it. But
in most of the sutras in subantaprakarana, it was possible to find their place
properly?.

5 Overview of the code

There are mainly 6 files in our code — ajax requirements.docx, ajax.php,
function.php, mystyle.css, script.js, subanta.html and subanta.php. We shall
now examine the salient features of the code used in this machine.

5.1 subanta.html, ajax requirements.docx, ajax.php and
script.js

Because we are treating only the subantaprakarana of SK (SK pp. 110-326),
it is not possible that machine knows all other sutras of AS. Even otherwise,
there are cases when the word declension depends on user’s intention (wvi-
vaksa). Therefore, it is not possible that a machine alone can give us desired
declension without user input. We have tried to make machine responsive
to the word entered by user. It shows appropriate radio buttons to gather

9 Till the paper for subanta generation was redrafted, the code has progressed beyond
stripratyayaprakarana and 80% of tinantaprakarana. This ‘NLP order model’ still held
good. So, the suggestion made earlier has been substantiated as the code advanced..

270

271

272

273

274

275

276

277

278

279

280

281

282

284

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 9

‘;I_cga"ﬁf: . viSvapA

o Devanagari ©IAST «SLP1

Is this akaranta dhatu? © No

l Submit Cuery I

Figure 1
User input window

additional information from user, if needed for our purpose. ajax require-
ments.docx, ajax.php and script.js are the scripts responsible for seeking the
input of user.

Let us clarify this with an example. If a user enters a word with ‘a’ at
the end and wants to decline it in masculine gender, we need to get the in-
formation whether this is akaranta dhatu or not. To get this information, we
take user input via ajax when a word ending in ‘@’ is entered and masculine
gender is selected as shown in Figure 1. For description of methodology,
please see section 11. The detailed list of cases where we take user input are
available on our website!?.

At this point let us clarify about two types of user input which have been
deployed. The first type is where the input is taken, because the declension
depends on the intention of user. An example of this case would be whether
‘sarva’ is used as sangjna or not. This is non-negotiable type of input, in the
sense that even in future we would not be able to do away with them. We

DOhttps://github. com/drdhaval2785/SanskritSubanta/blob/master/ajax\
%20requirement.docx/

285

286

287

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

10 D. PATEL AND S. KATURI

have written ‘no’ in the list in this file'! for this type of feedback. The second
type is where we do not know (as of now) how to decide some parameter
e.g. right now we are asking the user whether the word is abanta or not. In
future, when the machine learns how to differentiate a word having abanta,
we will no longer need this input. In that sense, this type is negotiable. As
the machine progresses, these input points can be removed. We have noted
down the second type of input with a ‘yes’ and a note on how we can remove
them in future. Veracity or otherwise of this list is open to suggestion.

5.2 function.php

Paninian grammar works on many sutras which are called for execution as
and when a condition is satisfied. We have devised some functions based on
those sutras for repetitive work e.g. functions ‘prat’ (pratyahara), savarna,
vriddhi, guna, dirgha, ti, mit etc. This file'? also holds the data sets e.g.
vowels, consonants etc in addition to the functions.

5.3 slp-dev.php and dev-slp.php

They are transliterator codes which convert SLP1 transliteration to Devana-
gari and vice versa. These codes are borrowed and modified from Dicrunch

code of Ananda Loponen!3.

5.4 subanta.php

This is the code which actually processes the entered word and shows the
result back to the user. The most intricate part about automatic declension
machine have always been rule triggering, conflict resolution and ordering
of sutras. The first two issues will be dealt with at their respective places.
The third is a bit lengthy, so its concept is discussed in the section of rule
ordering. Details of rule order are available on our website!?.

"https://github. com/drdhaval2785/SanskritSubanta/blob/master/user_input.
pdf

2https://github. com/drdhaval2785/SanskritSubanta/blob/master/function.
php/

Bhttps://github. com/drdhaval2785/sanskrit/tree/master/diCrunch/

“https://github.com/drdhaval2785/SanskritSubanta/blob/master/rule_order.
txt/

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 11

This code was first developed as a sandhi generator, and later on merged
with subanta generator. Therefore, coding for all sutras mentioned in sand-
hiprakarana is kept intact within this subanta generation machine. Most
of them are even used for derivation processes also. User may note some
pragrhya related portion which is not relevant to subanta generation directly
in the code, but we have retained it from the legacy of sandhi generator.

For most of the code we have retained a ‘4’ sign between prakrti and
pratyaya. But when it comes to dvitvaprakarana in tripadi, ‘4’ sign creates
some disturbance in the function because of a coding issue which we could
not overcome. So, for now we have removed + sign before dvitvaprakarana.
There are not many sutras after dvitvaprakarana, which need the identifica-
tion of pada and pratyaya. Therefore, there is not much information which
is lost by removing this ‘+’ sign.

khari ca (8.4.55) is a cyclic process till all possible combinations are
over. So, we have kept a while loop till there is no member satisfying the
condition. Let us clarify it with an example.

e.g. suhrd + sup => suhrdd + su (by anaci ca (8.4.47))=> suhrdt + su
(by khart ca (8.4.55)).

At this stage, there still is a ‘d’ preceding ‘t’. Therefore, khari ca (8.4.55)
finds its application once again. So, we have kept a while loop till there is
no member satisfying the condition. By doing this, we could ensure that
‘d’-> ‘t’ transition can still take place, and gives suhrttsu.

There is some gray area regarding application of paribhasa parjanyaval-
laksanapravrttih (pa 119)1. If there is a combination of car + khar letter,
should khari ca (8.4.55) apply, because ‘car’ is itself a subset of ‘jhal’?
Though there is no difference in the form, the rule must apply because of
parjanyavallaksanapravrttih (pa 119) paribhasa, because the conditions for
application of rule are satisfied. Should we display such cases or not is yet
to be determined, but, anyway, the code is mature enough to handle both
the choices.

6 Variables

AS uses variables very effectively in its structure. Several safijnas are as-
signed to the word and they are made use of at a later stage e.g. ‘sarva’ gets

15 The paribhasa numbers refer to paribhasendusekhara (1913)

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

12 D. PATEL AND S. KATURI

sarvanama-sanjna by sarvadini sarvanamani (1.1.27) and AS uses them at
places like sarvanamnah smai (7.1.14). In coding parlance, its close approx-
imation is something like this:

if (input word = sarva) { $sarvanama=1; }

This assigns $sarvanama value of 1 like Panini assigns it sarvanama
sanjna.

if ($sarvanama===1) { Do sarvanamnah smai (7.1.14) }.

This checks whether $sarvanama is equal to 1 or not, and executes the
code. It is similar to application of sarvanamnah smai (7.1.14) in case the

Thus, variables play very crucial role in the simulation of Panini’s gram-
mar. We have enumerated some of the variables which we have used in our
code so that the reader may have a bird’s view about what is happening in
the code.

Examples of variables used in the code are: sup, pada, bha, input word,
gender, transliteration, nadi, 14, abanta, taddhita, dhatu etc. All the vari-
ables can be seen in function.php and subanta.php. Their explanation and
importance are given in the code itself as and when they are applied for the
first time. Unless specified otherwise, the meaning of different values are: 0
- no application, 1 - mandatory application and 2 - optional application.

Variables are used for two purpose in our code: (1) to remember that
some rule has been applied e.g. $Ap=1 would mean that the word is
derived from some ap pratyaya (that rule has already applied) and (2) to
remember that some rule has to be applied e.g. $sarvafinal=1 would mean
that all rules specific to sarvanamas have to be applied. We have chosen
the variable names close to the corresponding grammatical notation so that
the it is easy to understand the code.

7 Rule Triggering

There are specific prakriyas to be followed in grammar when specific con-
ditions are satisfied. Therefore, appropriate rule triggering is of utmost
importance for success of the code. We have used inbuilt functions of PHP,
syntax of PHP, operators and some user defined functions to check whether
the conditions for application of a rule are met or not.

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 13

8 Sample Code

We will show a sample code here along with its explanation so that the user
may get the feel of what is happening in the background for fetching the
required output.

8.1 Rule triggering code

/* rieryah (7.1.13) */

if (arr($text,'/[a][+][0][e]/’) && $pada=== “pratyaya” && $so ===
ne’)

{

$text = one(array(“a+ne”),array(“a+ya”),0);

echo “<p class = sa >By neryah (7.1.13) :</p>";

echo “<pclass =sa > (..):</p>";

display(3);

$ne=1; // 0 - This sutra has not applied. 1 - This sutra has been applied.

}

8.2 Rule triggering explanation

1. if (arr(Stext,'/[a][+][n][e]/’) && $pada=== “pratyaya” && $so ===
“re”)

In this section we check the following conditions — the suffix ($so) is ‘rie’,
akara is followed by 7ie and 7e is a pratyaya. When these conditions are
satisfied, the rest of the code is executed.

2. { }

The bracketed area is code which is to be executed.

3. $text = one(array(“a+rne”),array(“a+ya”),0);

In this section, we convert ‘a+7ne’ to ‘a+ya’ i.e. we apply neryah sutra.

4. echo “<p class = sa >By neryah (7.1.13) :</p>7;

echo “<pclass =sa > (..):</p>";

We display the sutra which has been applied in this case.

5. display(3);

We display the word to user. (In Devanagari)

6. $ne =1;

We remember that the rieryah has been applied to this word, for future
use in code.

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

436

437

438

14 D. PATEL AND S. KATURI

9 Conflict Resolution

We have used usual Paninian methods like apavada, parasutra etc. for con-
flict resolutions as discussed in SK. Grammar books and their commentaries
provide plenty of literature on conflict resolution. There are many parib-
hasas also. The most important paribhasa dealing with conflict resolution
is paranityantarangapavadanam uttarottaram baliyah (pa 38).

This has been taken care of implicitly in rule ordering itself. We have
tried to place parasutra, nitya prakriyas, antaranga prokriyas and apava-
dasutras before purvasutra, anitya praokriyas, bahiranga prakriyas and ut-
sargasutras respectively. If there is conflict among para, nitya, antaranga,
apavada, the later wins. Such encounter has not happened in subanta gen-
eration stage. Sometimes paribhasas are nitya / anitya. Sometimes pur-
vavipratisedha'® applies e.g. numaciratrjvadbhavebhyo nut purvavipratised-
hena (va 4374). We have used purvavipratisedha whenever it is explicitly
mentioned in the text of SK. Thus, generic application of metarules is not
possible. So they will be applied in specific cases only. In addition, there are
places where grammarians have difference of opinion. In such cases we have
taken SK as authority!”. Whatever has been accepted in SK is imitated in
the code. If SK is silent on some topic, other available commentaries are
explored for solution.

9.1 Methods to avoid application of a rule

1. Ordering apavada, parasutra, antaranga, nitya, angavidhi, pratyaya
alteration rules before the utsarga, purvasutra, bahirariga, anitya and
other rules. This way, the later group sees a modified string which
does not satisfy criteria for their application.

2. Remembering that a rule has to be applied in future e.g. variable $pur-
vapara=1 means that the rule purvaparavaradaksinottaraparadharani
vyavasthayamasamjnayam (1.1.33) will apply later on. When the turn
of this rule comes we check whether variable $purvapara is equal to 1
or not.

18 parvavipratisedha means processes where the preceding sutra is given priority over
subsequent sutra , violating the general rule.
17 See SK part 1 page 161 under the rule trestrayah 7.1.53

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 15

439 3. Remembering that a rule is not to be applied in future e.g. if ato’m
440 (7.1.24) has been applied, we store the value of variable $atom as 1
201 and when conditions of application of svamornapumsakat (7.1.23) are
442 tested, we tell it not to apply the sutra to words where ato’m (7.1.24)
443 has been applied.

as 9.2 Notes on issues in conflict resolution

a5 With this background, let us examine some of the issues which cropped up
a6 during process of simulating subantaprakarana:

447 1. arambhasamarthya.

aa8 supi ca (7.3.102) is parasutracompared to nami (6.4.3). Even then, it
449 does not apply in case of nami (6.4.3) even though it is parasutra be-
450 cause of arambhasamarthya. So, due care needs to be taken in coding
451 such cases according to the explanation given in grammar texts.

452 2. anityatva of paribhasas.

453 For example, sannipataparibhasa does not apply in case of rie pratyaya.
454 supi ca (7.3.102) applies in that case. kastaya kramane (3.1.14) is an
455 example of anityatva'® of this paribhasa. If we code for such parib-
456 hasas to apply in every case, this form will get distorted. The better
457 alternative is to apply such paribhasas only in cases where SK has
458 validated its applicability.

450 3. sasajuso ruh and treatment of sakara.

460 Following code blocks should be placed before sasajuso ruh (8.2.66)
a61 for execution of code, otherwise their ultimate sakara may take
462 sasajuso ruh (8.2.66) to give undesired forms. - 1. etattadoh
463 sulopo’ko’nansamase hali (6.1.132), 2. so’ci lope cetpadapuranam
464 (6.1.134), 3. aniditam hala upadhayah kniti (6.4.24) for srams, dvams
465 etc 4. vasusramsudhvamsvanaduham dah (8.2.72). These code blocks
466 have to be kept before actual execution of sasajuso ruh (8.2.66).

267 4. natva.

18 This means the same rule applies with some condition at some place, but does not
apply at some other place even if the same condition is satisfied.

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

16 D. PATEL AND S. KATURI

It is difficult to identify where pada ends and another starts, espe-
cially in samasas. Therefore, the conflict resolution among sutras
ekajuttarapade nah (8.4.12) / rasabhyam no nah samanapade (8.4.1)
/ atkupvannumuvyavaye’pi (8.4.2)is extremely difficult until samasa is
parsed effectively.

10 Notes on some grammar issues and their coding
implications.

This section is devoted to brief mention of issues we encountered during
development of this software, which may serve as a reference point to the
future researchers in case they face the same difficulty in implementation.

1. Do-while loop for sapadasaptadhyaysi.

purvatrasiddham (8.2.1) sutra creates two separate data spaces for su-
tras of AS namely (1) sapadasaptadhyayr and (2) tripadi. There are
two other sutras which are also used to create separation of data spaces
like asiddhavad atrabhat (6.4.22) and satvatukorasiddhah (6.1.86)1.
We have not treated these two sutras here, because they are not ex-
plicitly treated in subantaprakarana of SK. So we will keep our dis-
cussion focused on purvatrasiddham (8.2.1) only?’. To put it it very
basic terms, purvatrasiddham (8.2.1) makes provision that the rules
in sapadasaptadhyayr have no fixed order of application and those of
tripadr have to be applied after all possible sapadasaptadhyay: rules
have applied to the word. Even inside t¢ripadi, the rules are to be ap-
plied sequentially. For sapadasaptadhyayi, we have created a do-while
loop which checks whether the word entering and word coming out
of this loop is the same or not. It continues till both are the same
(i.e. until there is no rule in sapadasaptadhyayr which can apply and
alter the word). In most of the cases, no looping of sapadasaptadhyayr
is needed. In other cases, only one looping of sapadasaptadhyayr is
needed. This is quite low burden on code as compared to checking
4000 rules every time. After that, it moves on to tripadi, where the

19 See Goyal et al. (2009) section 3.6
20 na lopaH supsvarasajhjjhatugvidhisu’ is dealt with in the code at places where it is
applicable.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 17

rules are usually written in sequence of their appearance in AS, so that
the rules apply sequentially.

In this approach, there is a limitation. There are certain rules in
sapadasaptadhyayi, which can apply only once. For such rules, we
have applied them before do-while loop or we have specified in do-while
loop that this rule is to be applied when the code is being executed
for the first time only by specifying $start=1. When the code comes
for execution for second time, we check whether $start===1. In the
second loop $start has value of 2 and therefore, this rule is not applied
for second time. This is, in a nutshell, what we do to ensure secrecy
of data space of sapadasaptadhyayr and tripads.

. asiddhatva of sakara for applicability of sasajuso ruh (8.2.66).

There are two possible cases (1) dhatus - pipathis, asis. (2) not dhatus
- dos, dhanus. The usual user tendency is to enter sakara at the end
of such words. If we proceed with this word, there is no sakara at the
end of the word, and therefore sasajuso ruh (8.2.66) can not apply. To
circumvent this, sakara has to be converted back to sakara for sasajuso
ruh (8.2.66)’s application. Similar situation appears in case of vivaks,
didhaks, pipaks etc. skoh samyogadyorante ca (8.2.29) does not apply
because kutva is asiddha to kalopa. Similarly, in case of cikirs - satva
is asiddha to ratsasya (8.2.24). Therefore, ratsasya (8.2.24) sees cikirs
only and not cikirs. Thus, it causes elision of last sakara. For such
typical cases, patches have to be applied in the code.

. All pratyaya alterations have to be completed before applying sutras

which remove it marker, otherwise it would not be possible to check the
exact pratyaya e.g. rama+rie -> rama+ya by neryah (7.1.13) sutra.
If we had removed the it marker ‘n’ before application of rieryah, the
situation would have been rama+e and we would have tough time
finding out whether this is a 7nit pratyaya or not.

. attributes of stem and suffix.

It is of vital importance to remember the attributes of stem and suffix
e.g. sarvanama, sarvanamasthana, it markers, previous application
of some sutra, bhasitapumskatva, trjvadbhava, original input word,
sambuddhi, sat, nadi sanjna etc. Some of them are discussed here in

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

18

D. PATEL AND S. KATURI

brief. These attributes may be absent, present or optionally present
in grammar. Because of these three types, it is not advisable to use
boolean variables for attributes, as they cater to only presence and
absence.

Status of sarvanama - It is important to know whether the word is a
sarvanama, not a sarvanama or optionally a sarvanama. With the help
of sarvadi gana and some user input, we decide whether $sarvafinal
= 0 (not sarvanama), 1 (sarvanama) or 2 (optionally sarvanama).
Sometimes, we need to add a member at a later stage in a gana. e.g.
‘sva’ is pronoun only if it is used not in the meaning of jiati or dhana.
If we add ‘sva’ directly into sarvanama set, it will give erroneous
results if it is used in sense of jnati or dhana.

it markers play an important role in derivation process e.g. aco niniti
(7.2.115) will apply only when the pratyaya has ‘i’ or ‘n’ as it marker.
Similarly there are many rules where we have to know about it marker.

It is wise to remember the first input word. This may be needed after
some time e.g. hali lopah (7.2.113) mandates elision of ‘id’ of ‘idam’
when certain conditions are met. Till this stage, ‘‘dam’ is already
converted to ‘ida’ by tyadadinamah (7.2.102) and ato gune (6.1.96).
Therefore we need to check whether this ‘ida’ was derived from ‘idam’
or not.

sambuddhi forms are different than regular forms. Therefore, it is
mandatory to remember whether the pratyaya is sambuddhi or not.
e.g. enhrasvatsambuddheh (6.1.69) will only apply in case of sambud-
dhi.

. stoh $cuna $cuh (8.4.40) and sat (8.4.44).

This case is different form of expression than regular ABC-> ADC
context based transformation. Therefore, special treatment is needed.
In this case, no specific order of letters is mandated. This rule applies
in case of juxtaposition rather than order. Therefore, a separate code
is needed to handle this rule. Similarly stuna stuh (8.4.41) and na
padantattoranam (8.4.42), anamnavatinagarinamiti vacyam (va 5016)
and toh sih (8.4.43) need specific treatment.

6. na lumatangasya (1.1.63).

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 19

10.

11.

This rule prevents conversion of padanta kim to ka. Explanation of
SK is given a place in derivation scheme. na lumatangasya (1.1.63)
also bars application of pratyayalope pratyayalaksanam (1.1.62) - so
we have to remember whether luk has happened or not. We should
also remember that na lumatargasya (1.1.63) is anitya paribhasa. It
does not apply in case of tricaturoh striyam tisrcatasy (7.2.99)%1.

sthanivadbhava.

There is a great deal of literature on what is sthanivadbhava and what
is not in SK. Therefore, we have not treated sthanivadbhava generi-
cally. We have coded according to it only when the derivation demands
such intervention to be made.

nimittapaye naimittikasyapayah.

When doing elision by samyogantasya lopah (8.2.23), we have to be
ready for application of nimittapaye naimittikasyapayah.

. Aberrant behaviour of rules.

vrddhyauttvatrjvadbhavagunebhyo num purvavipratisedhena (va 4373)
mandates that the numagama gets precedence over rules mentioned
here by purvavipratisedha. Similarly, numaciratrjvadbhavebhyo nut
purvavipratisedhena (va 4374) mandates that nudagama gets prece-
dence over rules mentioned here by purvavipratisedha. These rules are
exception to the general precedence of parasutra.

Sometimes grammarians try to justify the derivation of a $ista word by
‘akrtavyuhah paniniyah’.. An example of it can be seen in application
of acah (6.4.138).

Difference of opinion amongst grammarians. There is a difference of
opinion among grammarians regarding prarinam?®? and varsabhu. We
have accepted SK’s position.

Difficulty in coding.

rutva can happen any time in between code. Therefore,
upadese’janunasika it (1.3.2) which elides ukara of ‘su/” might not

21 See pp. 196 of SK part 1.
22 Qee SK part 1 p. 220

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

20 D. PATEL AND S. KATURI

work properly. Therefore, a special patch is made for rutva to convert
it to repha.

dhralope purvasya dirgho’nah (6.3.111). It is mandatory to remember
the repha / dhakara where this is to be applied. Otherwise, all the
hrasva + r/dh combinations in the word would be converted to dirgha
+ r/dh. For this purpose, we have added an artificial sign # before
repha or dhakara where this rule has to be applied.

bhasitapumskatva is very difficult to know from words, and many
prakriyas depend on whether the word is bhasitapumska or not. This
calls for user input.

In case of verbs, users may adopt different conventions for writing
a verb. For example, user may insert ancu, ancu, anc, anc, ancul,
anicu! anything. Such behavior is seen more frequently in case of
verbs with anubandhas and especially with verbs having a nasal letter
in it. So, the code has to be resilient enough to account for such
aberrant behavior of users.

Keeping ato gune (6.1.97) applicable to each sutra creates many issues
like interfering with akah savarne dirghah (6.1.101). Right now, ato
gune (6.1.97) is used in close conjunction with the rules where grammar
textbook mandates it and not as a separate code block.

11 User input

By the words user input, we mean ‘getting desired input from user for
correct declension of a word’. For a good code, this has to be at bare
minimum to enhance user experience. So we have decided what user input
fields are negotiable ones and which are not in this file?3. For user input, we
use radio buttons. In future, if there is a case where we must check multiple
parameters simultaneously, multiple check boxes can also be employed. The
documentation for user input is stored in ajax requirements.docx e.g. if
ajax.php uses $_GET[‘condl_2’|]===2, it means that condition 1.2.2 in
the document is satisfied. The user can easily make out from code and ajax
requirements.docx what we check out in user input.

Bhttps://github. com/drdhaval2785/SanskritSubanta/blob/master/user_input.
pdf

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

PRAKRIYAPRADARSINI - AN OPEN SOURCE SUBANTA GENERATOR 21

12 Limitations

After discussion on methodology followed by us, it would be of interest if we
place before the researchers some problem areas which we encountered, so
that they may be explored further with grammar texts and solutions may
be arrived at.

1. Difficulty in identifying attributes. Correct derivation depends on cor-
rect identification of attributes, but it becomes extremely difficult to
identify those attributes in some cases. In such cases, user input may
be our only hope.

nityastrilingatva has to be taken as user input, because it is difficult to
guess nityastrilinigatva by merely looking at the word. Some detailed
analysis of feminine words may help in this regard.

iyanuvansthanatva®® presupposes the knowledge whether the word

meets the criteria for application of ‘dyan’ or ‘uwvan’ It is difficult
to analyze this beforehand.

*9) s

There is a perpetual problem whether (1) one should retain “ri”, “rie”
etc till the prakriyas with rnittva start or (2) should we convert them
to ‘7', ’¢’ and remember that it has ‘n’ as it. Right now, the former
method is used preferably. wupasarjanibhutatva / pradhanatva — It is
very important to know these qualities in samasas. Right now, we are
not able to analyse samasas, so we have taken user input in this case.

As kvin | kvip pratyayas do not leave any mark on the word, they
are difficult to identify. Right now, more or less we are listing out
kvinnanta and kvibanta words manually, which may not be workable
in long run. We will have to think of some alternative to overcome
this problem.

It is difficult to differentiate abantatva or akaranta dhatu from merely
looking at the word. We will have to understand abanta pratyayas as
well as dhatu prakriyas to code properly for them.

abhyastatva. 1t is difficult to code for abhyastatva, till abhyasa prakriya
is taught.

24 AS1.4.4

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

22

D. PATEL AND S. KATURI

2. Problems with dhatus. It is difficult to identify dhatus. Even if we en-

list all dhatus in dhatupatha, there are namadhatus and sanadi dhatus
too, which make it difficult to identify where krdatin (3.1.93) is to be
applied. Right now, we are looking for ‘i’ to identify namadhatus.
e.g. edakwyati. It may need further revision when namadhatus are
taught to the system.

One needs to find all possible dhatus starting with “r” to decide
whether upasargadrti dhatau (6.1.91) is applicable or not. Even then,
special treatment for namadhatus is needed because the rule is optional
for namadhatus.

It is equally difficult to identify pratipadikas, because there are many
pratyayas which may derive a new noun from a dhatu. Some of them do
not even leave a mark morphologically like kvip / kvin etc. Therefore,
it is really difficult to identify pratipadikas and separate them from
dhatus.

. Issues of morphologic similarity.

Sometimes the prakriya is specified for word ending with some word
e.g. if a prakriya for ‘ahan’ is specified and we search for string ‘ahan’
only, the prakriya for ‘suryahan’ may not work well. Therefore, we
have to think about any morphological change which the word might
undergo under the influence of rules of sandhi too.

As we work with string of letters in coding, it is difficult to isolate
words ending with ‘han’ for applicability of inhanpusaryamnam Sau
(6.4.12). ‘han’ at the end of a word can also be part of ‘ahan’, where
this rule would be erroneously applicable. User input or exhaustive
enumeration will be needed for clarity.

. Issues of ekadesa.

adyantavadekasmin (1.1.21) rule is difficult to code, because right now
we are keeping a ‘4’ sign in between the stem and suffix. It is difficult
in current scheme of things to code properly to remember that the
ekadesa behaves as end of the previous one and the start of the next
one. Another question which deserves attention is how should ekadesa
be displayed? e.g. adgunah (6.1.87) mandates ekadesa. What should
we display in case of ‘rama+i’? ‘ram+e€ or ‘rame+’ 7 Let us show

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

709

710

711

712

713

714

715

716

717

718

719

PRAKRIYAPRADARSINT - AN OPEN SOURCE SUBANTA GENERATOR 23

13

our approach with example. In case of adgunpah (6.1.87), the term
‘at’ means that the adeda is after akara. So, we have kept it ‘ram-+-e¢’,
whereas akah savarpe dirghah (6.1.101) mandates replacement of ‘ak’.
So, we have kept ‘rama+t’.

. Issues in contextual derivation. As we are not working with sentences

for now, it is difficult to analyse attributes which depend on sentences
e.g. whether there is anvadesa or not in case of derivation of asmad
/ yusmad. Currently only words are being treated and not sentences,
so pada related functions are not applied for now.

. Different derivation in different meanings. e.g. the word sudhi can

be analysed as susthu dhiryasyah, susthu dhyayati, sushthu dhih. The
derivation differs in all the situations. Therefore it is mandatory to
take user input to specify which of these meanings he intends to use.

Listings. Various lists (over and above ganas) are needed for proper
declention of a word e.g. ugit dhatus, idit dhatus, rkaranta words etc.
Exhaustive lists remain to be made for such words.

Scope for Future work

. We have left out accents e.g. caturanaduhoramudattah (7.1.98) — we

have coded only for ‘am’ and left out ‘udattah’. We will have to treat
the accent at a later stage for sure, because the stripratyayas and
taddhitapratyayas have very peculiar effect on accent, otherwise mor-
phologically nip, nis, nin give the same forms.

. The sutras which we have not coded for are specifically mentioned in

code subanta.php. The user is advised to refer to them for further
details.

. sutras which involve interpretation of samasas are right now on user

input mode. Once samasa interpretation is taught to the machine,
they can be properly coded.

720

721

722

723

724

725

726

727

728

729

730

731

24 D. PATEL AND S. KATURI

4. We have prepared a list with a hint whether the requirement for user
input can be done away with or not?®. This can serve as a guide for
future researchers. The future attempts should be primarily focused
on removing the unnecessary user input from the machine. Once this is
achieved, researchers can take up the more challenging task of handling
the non negotiable kind of user input.

14 Conclusion

AS has a complex system of interrelated rules. Various authors have tried in
past to reorganize the order of AS for prakriyagranthas. Similarly there is a
need to reorder the AS for easy implementation of computational simulation
of AS. NLP order model and NLP order hypothesis presented in the present
work is a step in that direction.

Zhttps://github. com/drdhaval2785/SanskritSubanta/blob/master/user_input.
pdf

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

References

Bhatta, Nagesha. 1913. Vaidyanathakritagadatikasamualitah Paribhasen-
dusekharah. Ed. by Hari Narayan Apte. Anandasram Press.

Cardona, George. 2009. “Purvatrasiddham and asrayat siddham.” In: Studies
in Sanskrit Grammar. Ed. by George Cardona, Ashok Aklujkar, and
Hideyo Ogawa. DK Printworld, pp. 123-62.

Diksita, Bhattoji. 1910. Siddhantakaumudi of $ri Bhattoji Diksita with
the commentary $ri Balamanorama of $ri Vasudeva Diksita. S. Can-
drasekhara Sastrigal, Teppakulam.

Goyal, Pawan, Amba Kulkarni, and Laxmidhar Behra. 2009. “Computer
Simulation of Astadhyayn: Some Insights.” In: Sanskrit Computational
Linguistics 1 & 2. Ed. by Gérard Huet, Amba Kulkarni, and Peter Scharf.
Springer-Verlag LNATI 5402, pp. 139-61.

Hyman, Malcolm. 2009. “From Paninian Sandhi to Finite State Calculus.”
In: Sanskrit Computational Linguistics 1 & 2. Ed. by Gérard Huet, Amba
Kulkarni, and Peter Scharf. Springer-Verlag LNAI 5402, pp. 253-65.

Scharf, Peter M. 2008. “Modeling Paninian Grammar.” In: Sanskrit Com-
putational Linguistics 1 € 2. Ed. by Gérard Huet, Amba Kulkarni, and
Peter Scharf. Springer-Verlag LNAI 5402, pp. 95-126.

—. 2009. “Rule Selection in Astadhyayt or Is Panini’s Grammar Mechanis-
tic?” In: Studies in Sanskrit Grammar. Ed. by George Cardona, Ashok
Aklujkar, and Hideyo Ogawa. DK Printworld, pp. 319-50.

Appendix : Sample derivation of rama

Attached below is the derivation of ‘rama’ word 26

2645 on 27.9.2014 from http://lanover.com/lan/sanskrit/subanta.php?first=ramA&

gender=f&tran=Devanagari&cond2_1=2&step=2_1_2

25

26 16" WSC:SCL

arthavadadhAturapratyayaH prAtipadikam (1.2.45), kRttaddhitasamAsAzc:
(1.2.46), pratyayaH (3.1.1), parazca (3.1.2), GyAppradipadikAt (4.1.1),
svaujasamauTCaSTAbhyAmbhisGebhyAmbhyasGasibhyAmbhyasGasosAmG:
(4.1.2), vibhaktizca (1.4.104) and supaH (1.4.103) :

TATEIAIATT: AMAITSHH (2.R.¥4), PATGATATHE (2.2.%8), TAT: (3.2.2), T (G

SATHTAITEHIT (3.2.2), FISTHATG ERIAMR T ATRIS EnATR IS S E IS aegd (¥.2.),
TP (2.%.20%) O9T 9T: (2.%.203) :

1 - = T+Y
dvyekayordvivacanaikavacane (1.4.22) :
FFRANeaaThaad (2.%.2%) :

1 - AT+

By suDanapuMsakasya (1.1.43) :
HsA49hHT (2.%.%¥3) :

1 - THI+9

By upadeze'janunAsika it (1.3.2) :
U STAES 59 (2.3.R) :

1 - T+H

By tasya lopaH (1.3.9) :

T 3T (2.3.%) :

1 - TH1+9

By na vibhaktau tusmAH (1.3.4) :
T Tep=hr T (2.3.%)

1 - TH+H

Figure 2
Sample Derivation: Part 1 of 2

BIBLIOGRAPHY 27

By apRkta ekAlpratyayaH (1.2.41) :
IY=H Ushiedegd: (2.2.%2) :

1 - THT+H

i 4

i 4

Figure 3
Sample Derivation: Part 2 of 2

